

Materials Science & Chemistry

Fall semester (Sept - Feb) 2nd year of Master

Teaching Units	Teaching modules	Code		FOTO		
			Course	Practical Work	Total	ECIS
Languages	French as a foreign language		20		20	5
	*					
Research Project	Writing Report Oral Defense					10
Industrial Project	Writing Report Oral Defense					5

<u>Important note</u>: you cannot choose courses from different blocks. You must choose courses inside one single block (<u>either</u> Energy & Materials <u>or</u> Catalysis for Energy and Environment <u>or</u> Organic Synthesis)

Energy & Materials						
	Luminescent materials	15		15	3	
Materials Science	Criteria for materials selection	3	12 TP	15	3	
	Amorphous materials	14		14	3	
	Application of finite elements to thermo- mechanical coupling		12 TP	12	3	
	Corrosion of materials	22	7TD-4TP	32	3	
Choice 1 (Materials for Energy)	Fuel cells	10	4 TP	14	2,5	
	Thermoelectricity	14		14	2,5	
Chaine 2 (Materials for	Fatigue and materials failure	12	5 TD	17	2	
structures)	Assembly and tribology: finite elements modeling	14	12 TP	26	3	
Total				116/131	20	

Courses in italics are taught in French with slides, handouts and examinations in English

Chemistry – Catalysis for energy and environment

	Life cycle analysis: Application to processes	15		15	2.5
Catalysis for Energy & Environment	Biofuels & refining	15		15	2.5
	Capture, recovery and hydrogenation of CO ₂	15		15	2.5
	Remediation Catalysis	15		15	2.5
	Hydrogen and synthetic gas (SynGas)	15		15	2.5
Chamical Engineering	Applied Fluid Mechanics	- 10	5TD+16TP	31	4
	Engineering of separation process	15	12 TP	27	3.5
Total				133	20

Materials Science & Chemistry

Fall semester (Sept - Feb) 2nd year of Master

Chemistry - Organic Synthesis						
Analytical Chemistry and Chemical engineering	Engineering of separation process		15	12 TP	27	4
Organic Synthesis	Retrosynthetic analysis & Total synthesis		20		20	3
	Asymmetric synthesis & organometallics		20		20	3
	Heterocyclic compounds		20		20	3
	Catalysis and industry		10		10	2
	Heteroelements		20		20	3
	Energy Transition		15		15	2
Total					132	20

Courses in italics are taught in French with slides, handouts and examinations in English