

Material Science & Chemistry

Fall semester (Sept - Feb)
2nd year of Master

Teaching Units	Teaching modules	Code				
			Course	Practical Work	Total	ECTS
Languages	French as a foreign language		20		20	5
				-		
Research Project	Writing Report Oral Defense					10
Industrial Project	Writing Report Oral Defense					5

Total					164/169	20
structures)	Composite materials	3MAK1	14		14	2
Choice 2 (Materials for	Fatigue and materials failure	3MAK9	14	7 TD	21	3
Energy)	Thermoelectricity	3MAG3	15		15	2,5
Choice 1 (Materials for	Photovoltaics		15		15	2,5
	Corrosion of materials	3MAI6	21	7TD-4TP	32	3
	Non equilibrium thermodynamics	3MAI3	14	3 TD		2
	Materials and Nuclear applications	3MAD1	14			1.5
	Amorphous materials	3MAH2	14		14	1.5
Materials Science	Application of finite elements to thermo- mechanical coupling	3M1CA		12 TP	12	2
	Criteria for materials selection	3MAD7	3	12 TP	15	2
	Transmission electron microscopy	3MAD2	15		15	1.5
	Luminescent materials	3MAH4	15		15	1.5

Courses in italics are taught in French with slides, handouts and examinations in English

Material Science & Chemistry

Fall semester (Sept - Feb)
2nd year of Master

Chemistry - Petrochemistry & refinery							
Catalysis for Energy &	Life cycle analysis: Application to processes		15		15	2	
	Biofuels & refining	3MR15	15		15	2	
, ,,	Capture, recovery and hydrogenation of CO2		15		15	2	
Environment	Remedial Catalysis		15		15	2	
	Hydrogen and SynGas		15		15	2	
	Applied Fluid Mechanics	-	10	5TD+16TP	31	3	
	Engineering of separation process	3CAGC6	15	12 TP	27	3	
Chemical Engineering	Engineering of catalytic process	3CAGC8	15		15	1,5	
	Safety of industrial processes		15		15	1,5	
	Treatment of industrial effluents		10		10	1	
Total					173	20	

Chemistry - Organ	nic Synthesis					
	Scale up process	3CABA1	8		8	1
Analytical Chemistry	Engineering of separation process	3CAGC6	15	12 TP	27	3
and Chemical engineering	Safety of industrial processes		15		15	1,5
	Advanced Chromatography	3CAHC1	15		15	1.5
	Treatment of industrial effluents	3CACA2	10		10	1
Ourse is Countle asia 1	Retrosynthetic analysis & Total synthesis	3MR17	20		20	2
Organic Synthesis 1	Asymmetric synthesis & organometallics	3MR19	20		20	2
Organic Synthesis 2	Heterocyclic compounds	3CADA1	20		20	2
	Catalysis and industry	3CADC3	10		10	1
	Heteroelements	3CAEA2	20		20	2
	Energy Transition	3CAFC2	15		15	1.5
	New methods for polymer synthesis	3CADA4	15		15	1.5
Total					195	20

Courses in italics are taught in French with slides, handouts and examinations in English